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Abstract  

Background 

Near-infrared spectroscopy (NIRS) is a non-invasive neuroimaging technique that 

recently has been developed to measure the changes of cerebral blood oxygenation 

associated with brain activities. To date, for functional brain mapping applications, 

there is no standard on-line method for analysing NIRS data.  

Methods 

In this paper, a novel on-line NIRS data analysis framework taking advantages of both 

the general linear model (GLM) and the Kalman estimator is devised. The Kalman 

estimator is used to update the GLM coefficients recursively, and one critical 

coefficient regarding brain activities is then passed to a t-statistical test. The t-

statistical test result is used to update a topographic brain activation map. Meanwhile, 

a set of high-pass filters is plugged into the GLM to prevent very low-frequency 

noises, and an autoregressive (AR) model is used to prevent the temporal correlation 

caused by physiological noises in NIRS time series. A set of data recorded in finger 

tapping experiments is studied using the proposed framework.  

Results 

The obtained results suggest that the method can effectively track the task related 

brain activation areas, and prevent the noise distortion in the estimation while the 

experiment is running. Thereby, the potential of the proposed method for real-time 

NIRS-based brain imaging was demonstrated. 

Conclusions 

This paper presents a novel on-line approach for analysing NIRS data for functional 

brain mapping applications. This approach demonstrates the potential of a real-time-

updating topographic brain activation map.  

 

Background  
 Near-infrared spectroscopy (NIRS), an emerging brain imaging technique, 

measures the hemodynamic changes that effectively reflect the brain activity 

occurring while people perform a wide range of mental tasks [1-5]. It can provide 

both topographic [2, 4, 6] and tomographic [1, 7] brain images. Specifically, NIRS 

monitors the regional cerebral blood flow (rCBF) variation by measuring, through the 

skull, the absorption changes of near-infrared light at wavelengths between 650 nm 

and 950 nm [3]. These changes are caused by the concentration variations of oxy-

hemoglobin (HbO) and deoxy-hemoglobin (HbR), two primary absorbing 



chromophores in brain capillary blood.  

 NIRS, compared with other prevalent brain imaging and activity measurement 

techniques such as electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI), offers itself as a trade-off between spatial and temporal resolutions. 

The usability and drawbacks of NIRS methods, as discussed in a detailed review and 

comparison with other neuroimaging methods, was provided by Perrey [6]. fMRI has 

been used over the past decade in a growing number of applications. The critical 

drawbacks of the fMRI-based approaches, however, are the cost and the non-

portability of the fMRI scanner. In fact, another comprehensive review [8], in 

comparing the respective features of NIRS and fMRI, concluded that NIRS has great 

potentials for neurological and psychiatric applications, due to its simplicity, 

portability, and insensitivity to motion artifacts. Meanwhile, the EEG technique is 

limited, due to its poor spatial resolution and low signal-to-noise ratios in many 

applications; NIRS can provide comparatively better quality in these aspects [9]. 

Indeed NIRS, in its wide applicability, might help to bring functional imaging to the 

patient’s bedside [3].  

  

Methods 
 There is currently no standard method of topographic NIRS data analysis for 

brain mapping. In NIRS detection of hemodynamic responses, the light attenuation 

measured by the equipment needs to be converted to HbO and HbR concentration 

changes via the modified Beer-Lambert law (MBLL) [10]. Hence, a differential path 

length factor (DPF, intra- and inter-subject varying) in the MBLL has to be assumed 

to account for the increase of the path length between a source and a detector  [11].  

 The classical approach in topographic NIRS data analysis is a paired t-test to 



determine if a concentration change between two states (for instance, “rest” vs. 

“task”) is statistically significant. Many researchers nowadays use this approach [12-

14], because it is simple and, thus, can provide a quick assessment to the task. One of 

the most popular tools in this regard is a Matlab-based program known as HomER 

([15] http://www.nmr.mgh.harvard.edu/PMI/).  

 However, there are limitations to the classical t-test. First, a maximum activation 

period needs to be predefined. The remaining temporal information not included in 

the defined activation period therefore is ignored, leading to underestimation of brain 

activation. Another problem is the DPF assumption. Since the DPF is intra- and inter-

subject variant and impossible to be measured for every measurement location with 

commonly obtainable continuous wave NIRS equipment, use of a constant DPF leads 

to biased estimation of concentration changes [16]. 

 To overcome such problems of the classical t-test, a number of research groups 

have used various general linear model (GLM)-based methods for analysis of NIRS 

data [16-20]. The GLM-based methods were initially developed for fMRI-based 

functional brain mapping [21]. The GLM is a statistical linear concept that explains 

measured data in the form of a linear combination of several explanatory variables 

plus an error term. The explanatory variables, modelled according to the time course, 

separately account for the brain-activity-evoked signals and noises. Therefore, the 

estimation of brain activity is reduced to the problem of estimating the relevant 

coefficients with proper statistics. 

 The GLM-based methods negate the need for user-defined rest and task periods, 

because the response is modelled according to the entire time course. The temporal 

information over the entire time course, thus, is examined. On the other hand, the 

GLM-based methods investigate the temporal variation pattern of the signal, and 



estimate the coefficients with statistics at different measurement locations, separately. 

Therefore, these methods are robust in cases where an assumed constant DPF is used.  

 GLM-based methods, however, cannot offer on-line analysis. This constrains 

their use in applications where real-time information or feedback is required. Real-

time brain imaging data analysis in comparison with off-line methods, significantly, 

improves the information acquisition rate and the feedback speed. Furthermore, it may 

potentially benefit the development of brain-computer interfaces (BCI).  

 The critical task in modifying a GLM-based method on-line is the recursive 

estimation of GLM coefficients. Previous researchers have used different methods to 

achieve recursive estimation, including recursive least square [22], Cholesky-

decomposition-based recursive least square [23], and Kalman filtering [24, 25]. All 

these approaches can effectively and recursively estimate GLM coefficients.   

 It is not sufficient to draw an updated brain activation map only by estimating 

GLM coefficients on-line. It is known that NIRS time series contain noises from 

different sources. Very-low-frequency noises caused by optodes shifts or slow 

cardiac/vascular artifacts [26], for example, might lead to biased estimation. The 

temporal correlation caused by physiological (cardiac, respiratory, blood pressure) 

noises might lead to an inflated t-value and, thereby, overestimation of brain 

activation. Furthermore, for functional brain mapping applications, a statistical test is 

very important, since it will provide significance verification of the derived estimation. 

All these issues with regard to on-line versions of GLM-based methods need to be 

addressed.  

 On-line estimation of GLM coefficients is generally discussed in [24]. In [25], the 

whole framework provided on-line estimation of GLM coefficients, and a relevant 

statistical test analysed the fMRI data. However, this work did not consider temporal 



correlation in fMRI data, which might also exist in NIRS data. In [26], a framework 

for NIRS-based BCI applications was developed that can estimate GLM coefficients 

without statistical information in classifying different hand tasks in real-time. In [27], 

the feasibility of estimating GLM coefficients on-line using a Kalman filter by 

studying a set of fMRI data was examined. 

      In the present study, we develop an on-line Kalman-estimator- and GLM-based 

NIRS data processing framework for brain activation mapping. We aim to answer two 

questions. (i) Is it possible to covert the off-line GLM-based method to an on-line 

version for NIRS-based brain activation mapping? The proposed method can provide 

updated brain activation maps on-line as well as track task-related brain-active areas 

from an early stage while the experiment is running. (ii) Can the proposed method 

prevent noises that distort the estimation while data is sequentially incorporated? 

 

NIRS measurement system and experimental procedure 

 Five right-handed healthy volunteers (all male, aged 24 to 34 years) participated 

in the experiment. None of the participants had a history of any neurological disorder. 

All of the participants provided written informed consent. The experiment was 

conducted in accordance with the latest Declaration of Helsinki. The data were 

acquired with a continuous-wave NIRS imaging system (DYNOT: DYnamic Near-

infrared Optical Tomography) obtained from NIRx Medical Technologies, Brooklyn, 

NY, at a sampling rate of 1.81 Hz. The system emits laser lights of different 

wavelengths (760 nm and 830 nm) from each source. Figure 1 shows the channel 

distribution and measurement location. The distance between different optodes is 2 

mm. 

  In the experiment, the subjects were asked to perform a finger-tapping task. The 



experiment consisted of a 42 sec preparation period and 10 sessions. Each session 

included a 21 sec finger-tapping period and a 30 sec rest period. Accordingly, the total 

duration of the experiment was 552 sec.   

 

Analysis framework of NIRS data  

 A schematic summarization of our method is as follows. (i) The relative 

concentration changes of two blood chromospheres, HbO and HbR, are calculated via 

MBLL [10, 27]; (ii) A linear model is built according to the experimental procedure to 

fit the relative HbO concentration change. The model describes both the signals 

corresponding to the brain activity and the noise; (iii) The model coefficients are 

recursively estimated using the Kalman estimator; (iv) At every time step, the brain-

activity-related coefficient is selected, and then passed to the t-statistical test to 

determine if its value is statistically greater than zero (a value greater than zero 

indicates brain activity): In this way, a probability brain activation map is drawn. 

Figure 2 is a schematic flow chart of the framework. 

   

NIRS measurement model  

 In NIRS measurement, the optical density variation (∆OD) can be expressed 

as a linear combination of hemoglobin concentration changes ( HbOC∆  and HbRC∆ ) 

multiplied by proper coefficients. Their relationship is described in MBLL terms as  

         
λλ DPFLCαOD iλiλ ,,  ∆=∆  (1) 

where HbR

λ

HbRHbO

λ

HbO

λ
CαCαCα ∆+∆=∆ , λ is the wavelength of the laser source, i 

indicates channel number, αHbO [µM
-1

mm
-1

] and αHbR [µM
-1

mm
-1

] are the extinction 

coefficients of the HbO and HbR, L is the distance between the source and the 

detector, and DPF is the differential path length factor. In the present study, the 



optical density variation was derived by dividing the light intensity measured at each 

time step by the light intensity measured at the first time step. 

 

General linear model (GLM) 

 In NIRS-based studies, both HbO and HbR concentration changes can reflect 

changes in the rCBF. However, it has been suggested that HbO is a more sensitive 

indicator of such changes [28]. Therefore, only the HbO concentration change data 

was considered in the present study.    

 The GLM design process is described in detail in [29]; we provide only a brief 

description here. A design matrix H including a set of explanatory variables is 

predefined in order to model the observed NIRS time series. Five explanatory 

variables are considered. The first variable models the HbO concentration changes 

(the brain activity signals) using a stimulus vector convolved with the basis function 

(BF, a double-gamma model; [30]). The second one models the baseline level, and the 

remaining variables represent a set of high-pass filters (discrete cosine transform, 

DCT) [30] with a cut-off frequency of 0.0006 Hz.  

 At time k , y
i
(k), the measured NIRS data of channel i, is predicted by H(k), 

specifically by multiplying a coefficient vector plus an error term ε
i
(k). The model can 

then be expressed as 

  )()()()( kkkHky
iii εβ +=  (2) 

where β
i
(k) is the coefficient vector quantifying the magnitude of the explanatory 

variables. In vector β
i
(k), we are interested in the component β

i
1(k), which reflects the 

magnitude of the task-evoked brain response: By statistically determining if it is 

greater than zero, the existence of brain activity at the area covered by channel i can 

be confirmed (it is greater than zero) or ruled out (it is less than zero). 



 Several physiological processes are known to produce temporal correlation in 

NIRS data, which might lead to inflated t-values, and thus underestimation of brain 

activity. One way to deal with this problem is to make the model fit an AR (p) model 

(an autoregressive model of the order p). This leads to a decomposition of the error 

term ε into a systematic and a model conform error part. After this, the AR 

transformation coefficient is applied to both sides of the regression equation 

  y
i
(k)-ρy

i
(k-1) = (H(k)-ρH(k-1))β

i
(k) + u

i
(k)  (3) 

where ρ is the estimated autocorrelation coefficient in an AR(1) process, and u(k) = 

ρε(k-1) + ε(k). By redefining each transformed variable, that is, y
i*

(k) = y
i
(k) - ρy

i
(k-1),    

H
*
(k) = H(k) - ρH(k-1),   one can simplify Equation (3) to 

  y
i*

(k) = H
*
(k)β

i
(k) + u

i
(k) (4) 

It is worth noting that we make an assumption, |β(k) - β(k-1)| < ζ, for the AR(1) model 

used on-line in the current study, where ζ > 0 is an arbitrary small number. This 

assumption compromises the model’s robustness. However, as the result shows, the 

temporal correlation can be effectively reduced. In the present study, β
i
(k) was 

updated with a Kalman estimator.  

 

Kalman estimator 

 The Kalman filtering method is a recursive tracking scheme that estimates the 

state of a process using an updated regularized linear inversion routine [31]. After 

decades of development, the Kalman filtering is very mature. Due to its remarkable 

estimation performance, the Kalman filtering is widely used in many areas [32-34] 

including neuroscience [24, 25, 35, 36]. In the present study, the Kalman filter was 

used as a model coefficients estimator. The model coefficients from all of the 24 

channels were updated in parallel. For a given channel, the state vector, transition 



equation and observation equation can be described in the form 

  
T

L kkkkX ])()()([)( 21 βββ L=  (5) 

  )()1(ˆ)( kwkXAkX +−=  (6) 

  )()()()( kvkXkHky +=   (7) 

where L is the number of explanatory variables. The state is assumed to follow a 

random walk with zero drift over time: Thus, A equals the identity matrix, and the 

process noise ),0(~)( QNkw , y(k) is the measured data, H(k) is the vector of 

explanatory variables, and the observation noise ),0(~)( RNkv . The filter performs 

state estimation by the iterative process  

  )1(ˆ)(ˆ −=−
kXAkX  (8) 

  QAkAPkP
T +−=− )1()(  (9) 

  )()()()( 1
kEkHkPkK

T −−=  (10) 

  )()()(ˆ)(ˆ kykKkXkX ∆+= −  (11) 

  )())()(()( kPkHkKIkP
−−= , (12) 

where RkHkPkHkE
T += − )()()()( , )(ˆ)()()( kXkHkyky

−−=∆ , K(k) is the Kalman 

gain, and P(k) is the updated error covariance matrix. In this notation, the superscript 

(-) refers to the intermediate state and covariance predictions provided by the state 

update model, which are then modified by the measured data to produce the next state 

value. In the present study, the state vector was initialized to zero. The a priori 

estimates of the process and observation noise covariances (Q and R respectively) 

were (1 %/sec)
2
 and (0.5 µM/sec)

2
, according to a restricted maximum likelihood 

(ReML) estimation and an empirical-experimental performance check based on a set 

of training data. We collected the training data during 3 sessions of finger tapping for 



each subject. We estimated the Q and R values in two steps: They were estimated 

separately from each of the subjects by ReML, averaged, and then adjusted according 

to the performance in practically estimation based on the training data. 

 

t-Statistics  

 The estimated model coefficient vector β was used to calculate a relevant t-value 

for a one-tailed t-test to test the null hypothesis 0=βT
c  [29]. In the present study, the 

t-statistics of channel i at time step k were obtained using 

  

cHHck

kc
kt

k

k

T

k

Ti

iT
i

1

1

2
][)(ˆ

)(
)(

−

∑

=

σ

β
, (13) 

where c is a vector of contrast for selecting the coefficient of interest [29], and 
2

ˆ iσ  is 

the residual sum-of-squares divided by the appropriate degrees of freedom, and is 

given by 

  ∑ −
−

=
k

i

kk

i

k

i Hy
Lk

k
1

22
][

1
)(ˆ βσ , (14) 

where L is the number of regressors. Therefore, the null hypothesis 0)( =kc i

T β  was 

assessed by comparing t
i
(k) with a t-distribution with k-L degrees of freedom. By 

setting proper p-values with Bonferroni correction, a statistical activation map of the 

detected area could be displayed.  

Results  
 To simulate a real-time process, each measured data was incorporated 

sequentially in the analysis and updated at each time step. The entire procedure was 

simulated with Matlab at this stage. The computation time for one processing step was 

approximately 0.015 ± 0.0025 sec (mean ± standard deviation, 4 subjects averaged). 



 Figure 3 depicts the raw data, and the estimated and t-statistics values of two 

representative channels from subject 1: the activated area (channel 6) and an 

inactivated area (channel 22). The raw NIRS time series are plotted in the top panels. 

The time evolutions of the estimated 1β  are plotted in the middle panels. The 

corresponding t-statistics are plotted in the bottom panels. These values were 

estimated after the 6th sampling. 

 The motor cortex brain activity related to the finger-tapping task was found in 4 

out of the 5 subjects. In the case of the fifth subject, there was no brain activation 

identified by the proposed framework. Figure 4 shows representative snapshots of the 

probability activation map (t-statistics map) at the different times T = 120, 200, 300, 

400, 500, and 552 sec, from the top row (a) to the bottom row (f) of the detected area, 

for subjects 1 to 4. Row (g) shows the activation map estimated by the conventional 

method (the off-line GLM-based method, ordinary least squares followed by t-

statistics). The p-value set for an individual test was pin < 0.05. At an early stage, 

around 120 sec, the proposed method could track the finger-tapping-related brain-

active area, as indicated in Table 1, column 3. With Bonferroni correction, the time 

for the method to track the brain-active area was delayed by around 60 sec, as shown 

in Table 1, column 4. The estimated anatomical location of channel 6 was Broadmann 

area 4 (primary motor cortex), and of channel 4, Broadmann area 8. The result 

estimated by our framework was compared with the result estimated by the classical 

method. We found that at the final stage of the experiment, our results were almost 

consistent with those estimated by the conventional method. It is noteworthy that our 

method was able to locate and track the brain-active areas while the experiment was 

running and, thereby, to provide feedback on-line. 



Discussion  
 Changes in cerebral oxygenation reflect cerebral functional activity. In the present 

work, an updated version of the GLM was devised and used for on-line brain 

activation mapping. To demonstrate this framework, a finger-tapping task activation 

mapping study was carried out. This study allowed us to highlight several important 

features of our framework.  

 An obvious advantage of our method is its real-time applicability. The Kalman 

estimator has an acceptable computational overload, which allowed us to implement 

this method using Matlab in real-time (1.81 Hz in this study). The proposed method 

displays an updated brain activation map while the experiment is running. The finger-

tapping-related brain-active area can be identified and tracked at the early stage of an 

experiment. The data analysis stage in the classical GLM framework can be 

conducted only after an experiment, and thus needs extra time. By contrast, with the 

proposed method, the model coefficients are recursively estimated, and the brain 

activation map can be updated at each time step. Accordingly, the method is able to 

track the brain-active area in an ongoing experiment, and provide an early warning to 

the experimenter when the subject is not responding appropriately or the system is not 

working properly or well. Thus, both the subject/patient and researcher can receive 

feedback in real-time.  

 There are several physiological noises in NIRS data, including noises caused by 

cardiac and respiratory activity and blood pressure (Mayer wave) fluctuations, which 

might cause temporal correlation in the form of inflated t-values [27]. Ignoring these 

noises can lead to overestimation of brain activity. In [24, 37], sine functions at 

different frequencies were used to model these noises; resultantly, some nonlinear 

terms were added to the classical GLM, and an extended Kalman filter was used to 

update the magnitude and phase shift of the noise terms. In the proposed framework, 



we used an AR(1) model to reduce the temporal correlation. We compared the effect 

of temporal correlation reduction using the two methods. Figure 5 indicates that both 

methods were able to reduce the temporal correlation in the NIRS time series and, 

moreover, that the AR(1) model performed better.  

 Finally, the GLM combined with the Kalman filtering allowed for avoidance of 

very- low-frequency noises in the process of real-time estimation. In NIRS time 

series, very-low-frequency noises caused by optodes shifts or possible slow 

cardiac/respiratory artifacts sometimes exist. The upper plot in Figure 6 provides a 

sample data series containing very-low-frequency noise. The data in this plot was 

recorded at channel 19, subject 3. This channel covered the area of Bordemann area 9, 

where no brain activity was expected to be found in the current experiment. A clear 

slow shift of the baseline level can be identified by the human eye. In this study, a set 

of high-pass filters (discrete cosine transform, DCT) was modelled as regressors in the 

design matrix to remove the very-low-frequency noises on-line. The lower plot in 

Figure 6 shows estimation results using the DCT filter in comparison with those 

without using the DCT filter. This makes clear that without using the DCT filter, the 

estimation results were severely distorted by the low-frequency noise, which therefore 

would lead to a biased statistical analysis result.   

 There are some limitations of our method. First, the design matrix in the GLM 

was designed before the experiment. Different subjects might have individual 

hemodynamic responses. However, we assumed a general hemodynamic response 

model for different subjects in our framework. Our method might not work properly if 

a notable difference exists between the hemodynamic response of a subject and our 

modelled one. In [38], a set of linear combined Gaussian-based temporal functions 

was used to model the hemodynamic response. This model can approximate complex 



hemodynamic responses among different subjects, by means of multiple overlapping 

Gaussian functions. However, a recent work [39] suggested that event-evoked 

hemodynamic responses were similar among different subjects. In the current study, 

we also found a similarity in the hemodynamic responses, among all of our subjects. 

Therefore, we consider that it was sufficient to use the general hemodynamic model 

for estimation in current study.  

 The second limitation lies in the fact that we made only a preliminary conclusion 

about the feasibility of the proposed on-line framework, based on the results from 5 

subjects. In the current study, brain activity at the primary motor cortex was found in 

4 out of the 5 subjects investigated using the proposed framework. There was no brain 

activation area identified for subject 5, because the measurement noises (electric 

voltage fluctuations) induced by the equipment were very large in the case of this 

subject. Thus, no brain-active area could be identified based on the measured data. In 

order to produce a complete picture of the feasibility of the proposed framework, data 

needs to be measured for a greater number of subjects.  

 The t-statistics from the current study are based on the estimation of mean square 

error (MSE) via Equation (14). Therefore, while the experiment is running, the 

cumulative type I error increases as the test number grows. Thus, a post-hoc analysis 

is also needed to guarantee the statistical significance. We used Bonferroni correction 

for post-hoc analysis at each step in the current study. The pin for an individual test 

was set to 0.05, and the pb after Bonferroni correction was calculated as pb = (1 - (1 -  

pin)
j
] / j, where j represents the number of tests. As indicated in Table 1, column 4, the 

post-hoc analysis reduced the performance of the proposed framework, though it still 

yields promising results. Nevertheless, it might not be suitable for long-duration 

experiments (e.g. 6 hours’ measurement for sleep studies). When the number of tests 



increases to a large value, the pb might be difficult to satisfy, resulting in an 

underestimation of brain activation. This is one of the limitations of the proposed 

framework. The problem probably can be avoided, either by reducing the sampling 

frequency over a long-duration measurement, thereby reducing the number of tests, or 

by controlling the experimentation time.  

 The time needed for locating different brain-active areas differed in the current 

study. Because Kalman filtering is a recursive process, the new information will be 

added as it arrives at each sampling time. Therefore, the estimation results from early 

stages are less reliable than those from later ones. In another aspect, the brain is a 

heterogeneous and dynamic organ that can process parallel work (in different brain 

areas), and so the same estimation process might perform differently for different 

brain areas. In our study, channel 4 of subject 4 was identified as a brain-active area 

during the finger-tapping task. The area covered by channel 4 is Brodmann area 8, 

responsible for voluntary eye movement, which is not expected to be active during 

finger tapping. This particular result might be accounted for simply as an indication 

that subject 4 was moving his eyes frequently while tapping his finger.  

 The DYNOT equipment in the present study employs a brush-less DC servomotor 

to provide for light source beam positioning [40]. The motor is driven by a controller 

containing freely programmable microprocessor. In this experiment, only a simple 

open-loop control scheme was designed for controlling the motor moving. Some 

complex control algorithms can be applied to achieve a more precise motor 

controlling [41-46].   

 One further issue in NIRS topographical applications is the fact that only a small 

portion of a detected area is measurable with sparsely distributed channels. Either 

tomographical NIRS detection or application of interpolation techniques might help 



increase it [20]. Both solutions would require extra processing time. Therefore, the 

issue of the development of a proper means of achieving higher spatial resolution in 

real-time applications also will have to be resolved in future research.    

Conclusions  
        A new Kalman-estimator- and GLM-based NIRS data analysis framework was 

demonstrated for real-time imaging of brain activity. In an experiment, this 

framework allowed for updating of the topographic activation map of the detected 

brain area, and, additionally, it could locate the activated brain area at an early stage 

by analyzing the noise-containing raw data. 
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Figure legends 

 
Figure 1  - Channel distribution and measurement location on head 

The detected area covers the primary motor cortex, dorsolateral prefrontal cortex, and 

Broca's area of the left hemisphere of the subjects. The C3 location, in the 

international 10-20 system, is used as a reference. 

 

Figure 2  - Schematic flow chart of the framework 

 

Figure 3  - Representative plots of different quantities estimated on-line 

Panels (a) and (b) show the NIRS time series measured from the representative 

channels. Panels (c) and (d) show separately the estimated critical model coefficient 

β1. Panels (e) and (f) show separately the calculated t-statistics.  

 

Figure 4  - Representative snapshots of the activation map at different times, for 

different subjects 

Rows (a) to (f) show t-images of the four subjects at different times (T = 120, 200, 

300, 400, 500, and 552 sec). Row (f) shows t-images of four subjects estimated by the 

conventional GLM-based method. The results are presented by means of NFRI tools 

[47]. 

 

Figure 5  - Effect of temporal correlation reduction in NIRS time series 

The time course of inflated t-values caused by temporal correlation is shown in the 

figure. The effects of two different methods (the sine function model and the AR 

model) in reducing the temporal correlation are compared. 

 

Figure 6  - Very-low-frequency noises and the DCT filter effect 

Panel (a) gives an example of a piece of NIRS data containing very-low frequency 

noises. Panel (b) shows the DCT filter preventing very-low frequency noises from 

leading to biased results.  



Tables 
 
Table 1 - Time and location of the brain activities tracked   

 

Subject 
Channel 

(location) 

Time [sec] 

(pin<0.05) 

Time [sec] 

(pb, with Bonferroni correction) 

1 6 118 177 

2 6 115 170 

3 6 129 186 

4 335 402 
4 

6 125 184 
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y(k) = H(k)く(k) +i(k)
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